A boundary element approach for image-guided near-infrared absorption and scatter estimation.

نویسندگان

  • Subhadra Srinivasan
  • Brian W Pogue
  • Colin Carpenter
  • Phaneendra K Yalavarthy
  • Keith Paulsen
چکیده

Multimodality NIR spectroscopy systems offer the possibility of region-based vascular and molecular characterization of tissue in vivo. However, computationally efficient 3D image reconstruction algorithms specific to these image-guided systems currently do not exist. Image reconstruction is often based on finite-element methods (FEMs), which require volume discretization. Here, a boundary element method (BEM) is presented using only surface discretization to recover the optical properties in an image-guided setting. The reconstruction of optical properties using BEM was evaluated in a domain containing a 30 mm inclusion embedded in two layer media with different noise levels and initial estimates. For 5% noise in measurements, and background starting values for reconstruction, the optical properties were recovered to within a mean error of 6.8%. When compared with FEM for this case, BEM showed a 28% improvement in computational time. BEM was also applied to experimental data collected from a gelatin phantom with a 25 mm inclusion and could recover the true absorption to within 6% of expected values using less time for computation compared with FEM. When applied to a patient-specific breast mesh generated using MRI, with a 2 cm ductal carcinoma, BEM showed successful recovery of optical properties with less than 5% error in absorption and 1% error in scattering, using measurements with 1% noise. With simpler and faster meshing schemes required for surface grids as compared with volume grids, BEM offers a powerful and potentially more feasible alternative for high-resolution 3D image-guided NIR spectroscopy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image guided near-infrared spectroscopy of breast tissue in vivo using boundary element method.

We demonstrate quantitative functional imaging using image-guided near-infrared spectroscopy (IG-NIRS) implemented with the boundary element method (BEM) for reconstructing 3-D optical property estimates in breast tissue in vivo. A multimodality MRI-NIR system was used to collect measurements of light reflectance from breast tissue. The BEM was used to model light propagation in 3-D based only ...

متن کامل

The effects of internal refractive index variation in near-infrared optical tomography: a finite element modelling approach.

Near-infrared (NIR) tomography is a technique used to measure light propagation through tissue and generate images of internal optical property distributions from boundary measurements. Most popular applications have concentrated on female breast imaging, neonatal and adult head imaging, as well as muscle and small animal studies. In most instances a highly scattering medium with a homogeneous ...

متن کامل

Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments

In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...

متن کامل

Estimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments

In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...

متن کامل

A new approach to scatter correction in SPECT images based on Klein_Nishina equation

Introduction: Scattered photon is one of the main defects that degrade the quality and quantitative accuracy of nuclear medicine images. Accurate estimation of scatter in projection data of SPECT is computationally extremely demanding for activity distribution in uniform and non-uniform dense media. Methods: The objective of this paper is to develop and validate a scatter correction technique ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical physics

دوره 34 11  شماره 

صفحات  -

تاریخ انتشار 2007